Minireview Movement in ribosome translocation
نویسندگان
چکیده
Small GTPases play central roles in catalyzing each stage of protein synthesis on the ribosome. In prokaryotes, the relevant GTPases are: initiation factor IF2, which delivers the initiator tRNA to the P (peptide) site of the 30S ribosomal subunit; elongation factor EF-Tu, which delivers the aminoacyl-tRNA to the 70S ribosome (composed of 50S and 30S subunits); elongation factor EF-G, which promotes the translocation of tRNAs and the mRNA within the ribosome; and peptide release factor RF3, which promotes the dissociation of the release factors RF1 and RF2 following peptide release. These factors have been assumed to resemble classical GTPases, with the active form of the protein being the GTP binary complex. For example, the active EF-Tu•GTP complex binds aminoacyl-tRNA and transports it to the ribosome, which then stimulates the GTPase activity of EF-Tu (functioning as a GTPase-activator protein, or GAP) upon detection of a correct codon-anticodon interaction [1]. Following dissociation of EF-Tu•GDP from the ribosome, the GDP is exchanged for GTP in a guanine-nucleotide exchange reaction catalyzed by an elongation factor (EF-T) acting as a guanine-nucleotide exchange factor (GEF). For the other three factors, it is thought that the ribosome also provides the GAP function, whereas the requirement for a GEF has not been defined. The Ehrenberg group [2] recently discovered that the ribosome is in fact a GEF for the RF3 GTPase. Now, in Journal of Biology, the same group reports that the active form of EF-G for ribosome binding is the EF-G•GDP complex, not the EF-G•GTP complex, and that the ribosome acts as a GEF for EF-G as well [3]. Together with a number of other recent publications from the Ehrenberg, Frank, Wintermeyer and van Heel groups [4-6], these results shed new light on the roles of GTP and EF-G during the translocation reaction.
منابع مشابه
Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.
Translocation, a coordinated movement of two tRNAs together with mRNA on the ribosome, is catalyzed by elongation factor G (EF-G). The reaction is accompanied by conformational rearrangements of the ribosome that are, as yet, not well characterized. Here, we analyze those rearrangements by restricting the conformational flexibility of the ribosome by antibiotics binding to specific sites of the...
متن کاملFollowing movement of domain IV of elongation factor G during ribosomal translocation.
Translocation of mRNA and tRNAs through the ribosome is catalyzed by a universally conserved elongation factor (EF-G in prokaryotes and EF-2 in eukaryotes). Previous studies have suggested that ribosome-bound EF-G undergoes significant structural rearrangements. Here, we follow the movement of domain IV of EF-G, which is critical for the catalysis of translocation, relative to protein S12 of th...
متن کاملSynchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis.
The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolys...
متن کاملElongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome.
During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical ...
متن کاملRapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome.
Precise and coordinated movement of the tRNA-mRNA complex within the ribosome is a fundamental step during protein biosynthesis. The molecular mechanism for this process is still poorly understood. Here we describe a new sensitive method for monitoring elongation factor G-dependent translocation of the mRNA in the ribosome. In this method, the fluorescent probe pyrene is covalently attached to ...
متن کامل